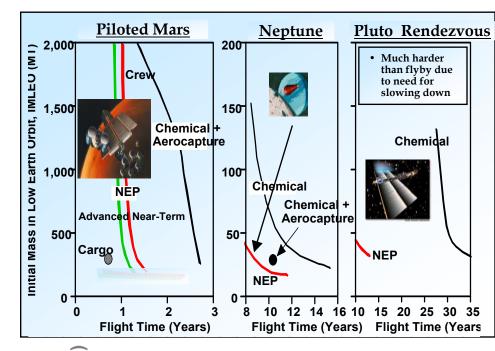


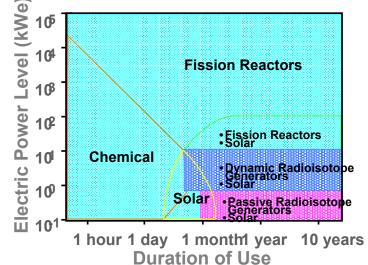
In-Space Propulsion Technologies Prioritized

Process

- Requirements/ Goals Established by NASA Enterprises
- Technology options identified
- Systems concepts developed
- Systems Concepts Compared
- Technologies Prioritized

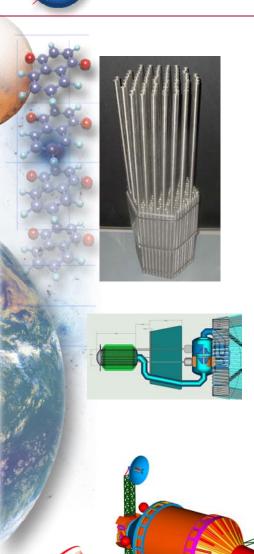
Code S Priority
Code M Priority
Code M and S

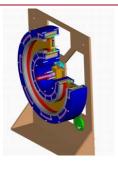

In-Space Propulsion Technology	High Priority	Medium Priority	Low Priority	High Payoff/ High Risk
Advanced Chemical				
Aerocapture				
Solar Electric Propulsion (SEP				
Nuclear Electric Propulsion (NEF				
Solar Sails				
Solar Thermal				
Nuclear Thermal Propulsion (Bimodal)				
Plasma Sails				
Momentum Exchange Tethers (MXER)				Junty.



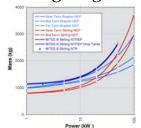
Nuclear Power and Propulsion

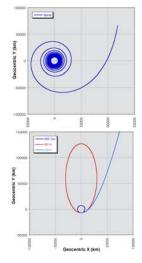
- NEP identified as high-priority in space propulsion technology for human and robotic exploration
 - Enables very high delta-V missions
 - Offers abundant power at destination
- Evolutionary approach to fission propulsion proposed (3 phases)
 - 10-500 kW NEP and surface
 - Up to 100 MW NEP, solid-core NTR
 - Up 1000 MW NEP, gas-core NTR
- Enables non-Keplerian orbits that can avoid hazardous regions (e.g. ring particles)
- Enables complex, long duration missions



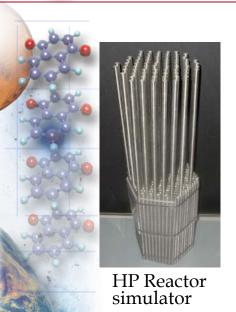


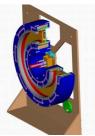
Nuclear Power and Propulsion

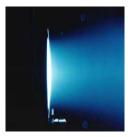




- Refurbished 2 kWe Brayton testbed and began high power Brayton system design studies with industry
- Conducted Heat Pipe reactor-to-Stirling power conversion integrated test
- Conducted Stirling engine-to-Hall thruster integrated test
- Fabricated and tested plasma injector for compact toroid high power plasma thruster
- Completed design and initial fabrication stages of 50kWe Hall thruster
- Conducted mission/trajectory design and analysis for high and low thrust nuclear propulsion systems
- Prepared conceptual designs of NEP and NEP/NTR vehicles for human and robotic science missions
- Reached 19,000+ hours on DS-1 ion engine ground test

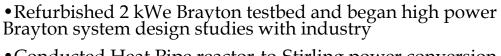


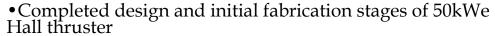

Nuclear Power and Propulsion

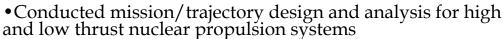

Gas cooled

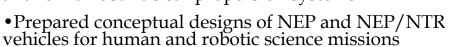
reactor concept

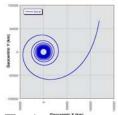
50 kW Hall

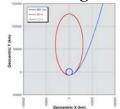

Ion thruster


Compact toroid Plasma thruster

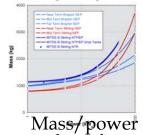



2 kW Brayton testbed


- Conducted Heat Pipe reactor-to-Stirling power conversion integrated test
- Conducted Stirling engine-to-Hall thruster integrated test
- Fabricated and tested plasma injector for compact toroid high power plasma thruster



• Reached 19,000+ hours on DS-1 ion engine ground test


Trajectory módeling

Science mission vehicle concept

HP reactor, Stirling test

trade study

Hall/Stirling test